Label-free detection of cupric ions and histidine-tagged proteins using single poly(pyrrole)-NTA chelator conducting polymer nanotube chemiresistive sensor.
نویسندگان
چکیده
Novel chemical and biological sensors based on a single poly(pyrrole)-NTA chelator nanotube for sensitive, selective, rapid and real-time detection of histidine-tagged protein and cupric ions are reported. NTA groups on the nanotube surface provided a simple mechanism for metal ion sensing via the high-affinity interaction between NTA and the subsequent detection of histidine-tagged protein through the coordination with metal chelated nanotube. Poly(pyrrole)-NTA chelator nanotubes of 190 nm outside diameter, 35 nm wall thickness and 30 microm long were synthesized by electrochemical polymerization of pyrrole-NTA inside a 200 nm diameter alumina template and assembled as a chemoresistive device by bottom-up contact geometry on a pair of parallel gold electrodes with a gap distance of 3 microm. The chemoresistive sensors based on single poly(pyrrole)-NTA chelator nanotube exhibited detection as low as one-hundredth attomolar (0.6 ppt) cupric ions and 1 ng/ml of penta-histidine tagged syntaxin protein.
منابع مشابه
Stable and functional immobilization of histidine-tagged proteins via multivalent chelator headgroups on a molecular poly(ethylene glycol) brush.
We present a generic approach for immobilizing oligohistidine-tagged proteins with high stability and homogeneous functionality onto glass-type surfaces. Multivalent chelator heads (MCH) carrying two and three nitrilotriacetic acid (NTA) moieties were coupled with controlled surface concentration to glass surfaces premodified with an ultrathin two-dimensional polymer brush of a bifunctional pol...
متن کاملDevelopment of a histidine-targeted spectrophotometric sensor using Ni(II)NTA-functionalized Au and Ag nanoparticles.
An antibody-free diagnostic reagent has been developed based on the aggregation-induced colorimetric change of Ni(II)NTA-functionalized colloidal gold and silver nanoparticles. This diagnostic strategy utilizes the high binding affinity of histidine-rich proteins with Ni(II)NTA to capture and cross-link the histidine-rich protein mimics with the silver and gold nanoparticles. In model studies, ...
متن کاملPyrrole detection by BeO nanotube: DFT studies
Electrical sensitivity of a beryllium oxide nanotube (BeONT) was examined toward (C4H5N) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31(d) level, and it was found that the adsorption energy (Ead) of pyrrole on the pristine nanotubes is a bout -48.58kcal/mol. But when nanotubes has been doped with S and P atomes , the adsorptio...
متن کاملRapid and sensitive electrochemical detection of DNA with Silver nanoparticle dispersed poly (9, 9-dioctylfluorene-ran-phenylene) nanocomposites
In this study a sensitive electrochemical sensor for the detection of E.coli has been developed using silver nanoparticle (Ag) embedded poly(9,9-dioctylfluorene-ran-phenylene) (CFP) nanocomposite as a conductive platform and DNA hybridization technique. The new polymer was synthesized from 9,9-dioctylfluorene and 1,3-dichlorobenzene and biphenyl through Friedel Crafts alkylation reacti...
متن کاملSpecific and stable fluorescence labeling of histidine-tagged proteins for dissecting multi-protein complex formation.
Labeling of proteins with fluorescent dyes offers powerful means for monitoring protein interactions in vitro and in live cells. Only a few techniques for noncovalent fluorescence labeling with well-defined localization of the attached dye are currently available. Here, we present an efficient method for site-specific and stable noncovalent fluorescence labeling of histidine-tagged proteins. Di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biosensors & bioelectronics
دوره 24 5 شماره
صفحات -
تاریخ انتشار 2009